

My name

5×3=155×3=15 5×3=155×3=15

Multiplication and Division

Copyright © 2009 3P Learning. All rights reserved.

First edition printed 2009 in Australia.

A catalogue record for this book is available from 3P Learning Ltd.

ISBN 978-1-921860-40-9

Ownership of content The materials in this resource, including without limitation all information, text, graphics, advertisements, names, logos and trade marks (Content) are protected by copyright, trade mark and other intellectual property laws unless expressly indicated otherwise.

You must not modify, copy, reproduce, republish or distribute this Content in any way except as expressly provided for in these General Conditions or with our express prior written consent.

Copyright Copyright in this resource is owned or licensed by us. Other than for the purposes of, and subject to the conditions prescribed under, the Copyright Act 1968 (Cth) and similar legislation which applies in your location, and except as expressly authorised by these General Conditions, you may not in any form or by any means: adapt, reproduce, store, distribute, print, display, perform, publish or create derivative works from any part of this resource; or commercialise any information, products or services obtained from any part of this resource.

Where copyright legislation in a location includes a remunerated scheme to permit educational institutions to copy or print any part of the resource, we will claim for remuneration under that scheme where worksheets are printed or photocopied by teachers for use by students, and where teachers direct students to print or photocopy worksheets for use by students at school. A worksheet is a page of learning, designed for a student to write on using an ink pen or pencil. This may lead to an increase in the fees for educational institutions to participate in the relevant scheme.

Published 3P Learning Ltd

For more copies of this book, contact us at: www.3plearning.com/contact

Designed 3P Learning Ltd

Although every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of this information contained herein.

Series D – Multiplication and Division

Contents

Topic 1 – Introducing multiplication (pp. 1–7)	Date completed
• groups of 5	/
• 5 times table	/
10 times table	
 multiplying any number by 10 	/
 multiplying numbers by 0 and 1 	
Topic 2 – Multiplication facts (pp. 8–19)	
• 2 times table	
4 times table	
3 times table	
6 times table	
• 9 times table	/
square numbers	/
multiples	/ /
Topic 3 – Mental multiplication strategies (pp. 20–25) • doubling strategy • split strategy • compensation strategy	

Series D – Multiplication and Division

Contents

Topic 4 – Division	(pp. 26–31)
--------------------	-------------

Date completed

 sharing and grouping 	/	/
left overs	/	1
the division symbol	/	/
 linking multiplication and division facts 	/	/

Topic 5 – Games and investigations (pp. 32–36)

highest product – apply	/	/
• mystery numbers – <i>solve</i>	/	/
multiplication concentration – <i>apply</i>	/	/
• product bingo – <i>apply</i>	/	/

Series Author:

Nicola Herringer

Use repeated addition to find the total number of fingers.

Find the total of each group by using repeated addition.

1

Introducing multiplication – groups of 5

This is a multiplication symbol × and it means 'groups of'. So instead of repeated addition, we can use a multiplication symbol.

5 + 5 + 5 + 5 + 5 = 25 5 × 5 = 25

Find the total of each group by using repeated addition:

Ring the shapes in groups of 5. One group is ringed for you. Then complete the multiplication fact.

Introducing multiplication – 5 times table

Here is a skip counting pattern on a hundred grid. It shows a counting pattern of 5.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Show × 5 multiplication facts on each number line.

2

a Finish labelling this number line and then show 5 jumps starting from 0:

b Finish labelling this number line and then show 7 jumps starting from 0:

Introducing multiplication – 5 times table

3 Write a 5 times table fact for each set of 5 cent coins. The first one has been done for you.

Δ

Times tables are a set 5 Now answer the mixed up 5 times table. of multiplication facts from 1 to 10 based on **b** 8 × 5 = **a** 2 × 5 = multiplying by the same number each time. Write the answers for **c** 9 × 5 = **d** 10 × 5 = the 5 times table. $1 \times 5 =$ **e** 3 × 5 = f 6 × 5 = 2 × 5 = g 7 × 5 = h 5 × 5 = 3 × 5 = i 1 × 5 = j $4 \times 5 =$ $4 \times 5 =$ 5 × 5 = 6 Write the missing number in each 5 times table fact. 6 × 5 = \times 5 = 35 b $\times 5 = 20$ а 7 × 5 = $\times 5 = 50$ d $\times 5 = 15$ С 8 × 5 = $\times 5 = 40$ f \times 5 = 10 е 9 × 5 = $10 \times 5 =$ $\times 5 = 30$ \times 5 = 45 h g

Introducing multiplication – 10 times table

If you can skip count in 10s, you know your 10 times table.

Multiplication and Division Copyright © 3P Learning

SERIES

TOPIC

Introducing multiplication – multiplying any number by 10

When we multiply any number by 10, a zero goes in the units column and the digits all move one space along to the left.

Hundreds	Tens	Units	
		2	
	2	0	2 × 10 = 20

Show how the digits all move along when they are multiplied by 10 and write the answers below:

а	Hundreds	Tens	Units	b	Hundreds	Tens	Units
			7				3
		7	0				
	7 ×	10 =			3 ×	10 =	
с	Hundreds	Tens	Units	d	Hundreds	Tens	Units
		1	5			2	2
	15 ×	10 =			22 ×	10 =	

Connect these × 10 facts to the answers:

2

Multiplication and Division

Introducing multiplication – multiplying numbers by 0 and 1

Any number multiplied by 1 always equals the same number. Any number multiplied by 0 always equals zero.

Multiplication facts - 2 times table

Counting in 2s, will help you know many times table facts.

Copyright © 3P Learning

8

SERIES

TOPIC

Multiplication facts – 2 times table

9

SERIES

TOPIC

Multiplication facts – 4 times table

Copyright © 3P Learning

SERIES

ΤΟΡΙΟ

Multiplication facts – 4 times table

4

Here is a half of a hundred grid:

- **a** Circle the counting pattern of 2s. Cross the counting pattern of 4s.
- **b** What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Complete the matching × 2 and × 4 facts:

a $6 \times 2 = 12$ and $3 \times 4 = 12$

Multiplication and Division

Copyright © 3P Learning

SERIES

TOPIC

Multiplication facts – 3 times table

Practise your 3 times table. 2 Use this array Now try them mixed up: $1 \times 3 =$ to complete the 3 times table: $2 \times 3 =$ **b** 8 × 3 = **a** 3 × 3 = $3 \times 3 =$ **d** $10 \times 3 =$ **c** 7 × 3 = $4 \times 3 =$ **e** 2 × 3 = f $5 \times 3 =$ $6 \times 3 =$ **g** 5 × 3 = 6 × 3 = h 7 × 3 = i 9 × 3 = j $8 \times 3 =$ $9 \times 3 =$ $10 \times 3 =$ 3 Alfred is an alien from the Planet Trampolon. The surface of Planet Trampolon is like walking on a trampoline. That's why Alfred and all his race of aliens need 3 legs for extra balance. They also have 3 fingers on each hand and 3 eyes. **a** How many legs for: 6 aliens? 4 aliens? 6 × 4 x = = **b** How many eyes for: 3 aliens? 10 aliens?

х = × **c** How many fingers on one hand for: 9 aliens? 5 aliens? × = ×

 $4 \times 3 =$

 $1 \times 3 =$

12

Multiplication and Division

Multiplication facts – 3 times table

4 Label the number line so it goes up in 3s: 0 3 Write two turnaround facts for each array. The first one has been done for you. 5 3 12 4 = b X = X = × С а 3 4 12 × = × = × = f d × = × = X = е × = × = х =

Copyright © 3P Learning

13

Practise your 6 times table. Did you know that we can use × 6 for short? So × 6 just means 6 times table, just as × 3 means 3 times table.

Multiplication facts – 6 times table

6 Complete this table to show how to change a × 5 array to a × 6 array by building up. The first one has been done for you.

	× 5	Build up by	× 6
а	3 × 5 = 15	3	$3 \times 6 = 18$
b	2 × 5 = 10		
С	7 × 5 = 35		
d	4 × 5 = 20		
е	6 × 5 = 30		
f	9 × 5 = 45		

Practise your 9 times table. Use this array to complete $1 \times 9 =$ the 9 times table: $2 \times 9 =$ $3 \times 9 =$ $4 \times 9 =$ $5 \times 9 =$ $6 \times 9 =$ $7 \times 9 =$ $8 \times 9 =$ $9 \times 9 =$ $10 \times 9 =$ Complete these × 9 facts. Look out for turnarounds. 2 **c** 6 × 9 = **a** 3 × 9 = **b** 9 × 4 = $d 2 \times 9 =$ **e** 9 × 5 = **f** 1 × 9 = Find the cost of these items: 3 **b** 4 banana splits = **a** 6 fruit salads = Mango juice \$3 Banana split \$6 c 3 mango juices = **d** 5 fruit salads = Fruit salad \$9 **f** 7 mango juices = e 3 banana splits =

Multiplication facts – 9 times table

Complete this table to show how to change a × 10 array to a × 9 array by taking 1 from each row.

× 10	Build down by	× 9
3 × 10 = 30	3	3 × 9 = 27
5 × 10 = 50		
9 × 10 = 90		
6 × 10 = 60		
4 × 10 = 40		
2 × 10 = 20		
8 × 10 = 80		
7 × 10 = 70		

Multiplication facts – square numbers

Here is another way to show square numbers. Look at the array shown on each grid and write the square number multiplication:

2 On this grid, shade the largest square number you can:

When two numbers are multiplied together, the answer is called a multiple. For example, the first 3 multiples of 5 are 5, 10, 15.

 $1 \times 5 = 5$ $2 \times 5 = 10$ $3 \times 5 = 15$

1

2

3

Complete the list of multiples for each number in the circle:

In each group of multiples, cross out the number that does not belong. You will need to look carefully, because they are not in order.

а	Multiples of 5	10	20	35	40	12
b	Multiples of 6	12	6	29	24	18
С	Multiples of 8	25	16	32	40	8

Use the clues to work out the multiples:

a This number is a multiple of both 9 and 3 and is less than 20 but greater than 10.

- **b** This number is a multiple of 5. It is greater than 15 but less than 25.
- **c** This number is a multiple of both 4 and 8 and is the next squared number after 9.

Mental multiplication strategies – doubling strategy

There are many double facts that you should know.
This includes numbers outside the times tables that we have been working on.
Here are 2 double facts that are handy to know:
double 20 is 40 double 15 is 30 Can you think of more?

List all the double facts outside of the 2 times table that you know in the space below. Here are two to start you off:

Doubling 2 digit numbers is easy if you split the digits and double each part. Complete this doubling grid. The first one has been done for you.

a Double 36	b Double 23
$= 30 \times 2 + 6 \times 2$ = 60 + 12 = 72	
c Double 19	d Double 41

Mental multiplication strategies – doubling strategy

4

С

e

The double-double strategy is when you multiply by 4. Look at double-double 2: double 2 once is 4 and double 2 twice is 8. Practise using the double-double strategy with these tables. The first one is done for you.

а	7 × 4 = 2	8
	Double 7 once	14
	Double 7 twice	28

b	15 × 4 =	
	Double 15 once	
	Double 15 twice	

21 × 4 =	
Double 21 once	
Double 21 twice	

11 × 4 =	
Double 11 once	
Double 11 twice	

d	12 × 4 =	
	Double 12 once	
	Double 12 twice	

f	14 × 4 =	
	Double 14 once	
	Double 14 twice	

5 Play this game with a partner. You will need this page each and a die to share. The aim is to be the first to place a tick above all the numbers. Double or double-double the number rolled on the die, then tick the answer on the grid.

For example, Player 1 rolls a 4. They can either double it in order to tick 8 OR double-double it to tick 16. You must apply one of the strategies to the number rolled. If you can't tick a box, you miss a turn!

2	4	6	8	10	12	16	20	24

Mental multiplication strategies – split strategy

The split strategy is when we multiply numbers in 2 parts.	What is 12×5 ? $10 \times 5 = 50$ $2 \times 5 = 10$
Let's use the split strategy for 12×5 .	
Split 12 into 10 and 2. Next multiply each part by 5, then add:	50 + 10 = 60 50 + 10 = 60 50, 12 × 5 = 60

Try the split strategy with these. Use the arrays if you get stuck.

a What is 12 × 7?

b What is 12×9 ?

22

Mental multiplication strategies – split strategy

Practise the split strategy again, this time without an array to look at.

a What is 12 × 3?

b What is 12×6 ?

c What is 12×8 ?

3 Use the split strategy to multiply by 13.

Mental multiplication strategies – compensation strategy

Remember how we learned the \times 9 by building down from the \times 10? $3 \times 10 = 30 - 3 \longrightarrow 3 \times 9 = 27$ This is the compensation strategy. Look at 3×19 . 19 is close to 20, so we can multiply by the next multiple of ten which is 20. Then we build down because we have an extra group of 3. $3 \times 19 \longrightarrow 3 \times 20 = 60 - 3$ So, $3 \times 19 = 57$ When you are multiplying by a multiple of ten, look for a fact you know then put a zero on the end. These patterns show you how to do this: **a** 3 × 2 = **b** 5 × 3 = 3 × 20 = $5 \times 30 =$ **c** 7 × 2 = **d** $4 \times 4 =$ 7 × 20 = $4 \times 40 =$ The steps for the compensation strategy are set out for you here. Practise multiplying by the next multiple of ten and then build down. a 5 × 29 → 5 × 30 = - 5 So, 5 × 29 = **b** $3 \times 19 \longrightarrow 3 \times 20 =$ - 3 So, 3 × 19 = c $2 \times 39 \longrightarrow 2 \times 40 =$ - 2

So, 2 × 39 =

Mental multiplication strategies – compensation strategy

3

Use the compensation strategy. This time you have to think of the next multiple of ten and what you have to build down by. The first one has been done for you.

Which strategy did you use and why?

Which strategy did you use and why?

25

Division – sharing and grouping

Division is when we make fair shares.

If we share these 6 cakes equally between 2 kids, they each get 3 cakes. We call these fair shares because each share is equal.

26

SERIES

TOPIC

Share the items equally in each picture by drawing lines to connect them. Write how many are in each share.

Division – sharing and grouping

Draw a picture to show 7 groups with 5 in each share.

How many in total?

27

Division – left overs

Sometimes when we make equal groups there are some left over. Here are 13 bananas. If we make 2 equal groups of 6, there is 1 banana left over.

a Here are 13 butterflies:

If we make ______ equal groups

of 3 there is _____ left over.

c Here are 21 paper planes:

If we make _____ equal groups

of 6 there are _____ left over.

b Here are 16 apples:

If we make _____ equal groups

of 7 there are _____ left over.

d Here are 19 match sticks:

If we make _____ equal groups of 5 there are _____ left over.

2 Draw a picture to show 12 groups of 2 with 1 left over.

How many are there in total?

28

Division – the division symbol

So instead of saying 'Share 12 tennis balls fairly between 2 tennis players. How many balls do they each get?'

We can write: $12 \div 2 = 6$

This says 12 divided by 2 is 6. It means that there are 2 groups of 6.

Write the division facts using the division symbol for each picture:

Solve each of these division problems:

a Share 15 lollies between 3 bowls. How many lollies are in each bowl?

- **b** Share 20 oranges between 5 baskets. How many are in each basket?
- **c** Out of a pile of 36 coloured pencils, 6 go into each pot. How many pots are needed?

Division – linking multiplication and division facts

Copyright © 3P Learning

SERIES

TOPIC

Division – linking multiplication and division facts

Play this memory game with a partner. The aim of this game is to find pairs of matching multiplication and division facts. Each player needs a copy of this page and to cut out their cards. Players join their cards together, shuffle and lay them face down. Take turns in turning over a pair of cards. If they match the player keeps the pair, if they don't match, they must be placed back in the same position. The winner is the player with the most pairs.

	
16 ÷ 4	4 × 4
20 ÷ 4	4 × 5
12 ÷ 2	2 × 6
21 ÷ 3	3 × 7
8÷4	2 × 4
18 ÷ 2	2 × 9

Multiplication and Division

Highest product

This is a game for two players. You will need a pack of playing cards but just the cards with numbers on them. You will also need a copy of this page so you can use the table to keep score.

apply

Shuffle the cards well and deal them evenly so you each get 18 cards. Player 1 turns over two cards and finds the product by multiplying these together. Player 2 does the same. The

highest answer wins the round and scores a point. Use the table below to keep track of your scores.

.....

Player 1	Player 2

Multiplication and Division Copyright © 3P Learning

Multiplication concentration

This is a game for two players. Copy this page and page 35, and then cut out all the cards.

apply

Getting

ready

Shuffle the cards well and lay them out face down in an array in two groups. The rectangles are the questions, the squares are the answers. Players take turns turning over one of each card. If they can make a multiplication fact, the player keeps the pair. Keep playing until there are no cards left. The winner is the player with the most matching pairs.

4 × 8	2 × 9	7 × 5	3 × 3
6 × 4	9 × 3	4 × 4	5 × 8
4 × 5	8 × 8	3 × 5	8 × 9
7 × 6	6 × 6	4 × 7	9 × 5
5 × 5	8 × 6	7 × 2	5 × 10

34

Multiplication concentration apply						
3 ×	73×	- <i>-</i> ~ 10		copy		
4 ×	99>	× 7 8	5 × 7			
= 32	= 18	= 35	= 24	= 27		
= 30	= 20	= 21	= 15	= 42		
= 36	= 28	= 25	= 48	= 14		
= 72	= 56	= 40	= 45	= 63		
= 9	= 50	= 16	= 36	= 64		

Multiplication and Division

Copyright © 3P Learning

Choose one player to be the caller. The other players fill their grid with numbers from this list: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30 and 36.

The caller rolls the dice and calls out a times table fact based on the numbers rolled. For example, if they roll a 6 and a 5, they would say 6×5 . If a player has 30 in their grid, they place a counter on the number. The winner is the first player to get rid of all their counters.

